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Abstract
In contrast to zinc oxide (ZnO), the antibacterial potential of zinc hydroxyacetate (Zn-HA) remains unexplored. In this 
study, we fabricated alginate/TEMPO-oxidized nanocellulose (AT) hydrogels containing three types of zinc particles (Zn 
Ps): Zn-HA, Zn-N (ZnO nanoparticles), and Zn-C (commercial ZnO). The antibacterial efficacy of these hydrogels was 
assessed and compared. The integration of Zn Ps into AT hydrogels was achieved through a facile method, resulting in the 
formation of composite hydrogels with layered three-dimensional structures. The addition of Zn Ps reduced the mechanical 
properties and swelling ability of the hydrogels. The antibacterial activities of the Zn Ps and hydrogels were evaluated 
using the disc diffusion method. Surprisingly, Zn-HA exhibited significantly stronger antibacterial efficacy against both 
E. coli and S. aureus, with the zone of inhibition (ZOI) ranging from 11 mm to 19.7 mm compared to Zn-C and Zn-N 
(ZOI of 8.3–9.3 mm). This improved antibacterial activity might be attributed to the higher release of Zn2+ from Zn-HA 
(7.5 mg/100 mL compared to 0.8 and 1.2 mg/100 mL), as evidenced by the zinc dissolution study. The antibacterial 
activity of the AT hydrogels was significantly enhanced by the inclusion of Zn-HA but not Zn-C or Zn-N. All hydrogels 
exhibited mild toxicity to human skin fibroblasts. In summary, our findings challenge the expectation that ZnO (Zn-C and 
Zn-N) would have better antibacterial properties due to their smaller particle sizes in comparison to Zn-HA microparticles. 
Additionally, our results indicate that converting Zn-HA to ZnO is unnecessary to impart antibacterial properties to the 
hydrogels. Thus, AT hydrogels containing Zn-HA (ATZ-HA) can potentially be used as advanced antibacterial materials, 
possibly for use in wound dressings.

Received: 8 March 2024 / Accepted: 29 April 2024 / Published online: 9 May 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Investigating the Antibacterial Effectiveness of Zinc Particles in 
Different Forms within Alginate-Based Hydrogels Incorporating 
Nanocellulose

Muhamad Alif Razi1,2 · Gerald Ensang Timuda3 · Deni Shidqi Khaerudini3 · Ni Putu Ratna Ayu Krishanti4 ·  
Andri Pramesyanti Pramono5 · Luciasih Agustini6 · Wahyu Ramadhan7,9 · Safrina Dyah Hardiningtyas7 · 
Maya Ismayati2 · Novitri Hastuti2,8

1 3

http://crossmark.crossref.org/dialog/?doi=10.1007/s10876-024-02632-x&domain=pdf&date_stamp=2024-5-6


M. A. Razi et al.

Introduction

The use of environmentally friendly organic materials such 
as polysaccharides for the research and development of 
composite materials has become a popular trend in recent 
years. Polysaccharides, derived from renewable sources 
such as plants and algae, offer numerous advantages over 
traditional synthetic materials because they are abundant, 
biodegradable, and non-toxic, making them ideal for vari-
ous applications in industries such as food and health sec-
tors [1, 2].

Alginate and nanocellulose are potentially attractive 
polysaccharides that can be used as composite materials. 
Alginate is a naturally occurring polysaccharide derived 
from brown seaweed that consists of β-D-mannuronic acid 
(M) and α-L-guluronic acid (G) [3, 4]. Nanocellulose, on 
the other hand, is a nanoscale cellulose material with unique 
mechanical properties and a high surface area [5]. Both are 
considered promising materials for various applications 
owing to their abundance, biodegradability, and sustainabil-
ity [6].

Composite materials comprising alginate and nanocel-
lulose show promise for various applications such as bio-
printing, biomedical, and tissue engineering [7–10]. For 
instance, the unique combination of nanocellulose shear-
thinning properties and the viscous nature of alginate allows 
the formation of hydrogels with divalent cations under 
physiological conditions, making them highly appealing 
for bioprinting purposes [7]. In addition, nanocellulose can 
improve the structural, mechanical, and chemical stabil-
ity of alginate hydrogels, as indicated by the occurrence of 
3D fibrous structures, reduction of alginate syneresis, and 
increase in resistance and Young’s modulus, which allows 
biomedical application of these composite hydrogels for the 
encapsulation of cells and tissue engineering [8–10].

Although composite alginate/nanocellulose hydrogels 
have shown promising chemical and physical proper-
ties, their functionalities, such as antibacterial activity, are 
often limited to more advanced biomedical applications, 
such as wound dressings [11]. To overcome this limitation, 
researchers have explored new strategies such as incorpo-
rating antimicrobial agents into the composite hydrogel 
matrix. This approach aims to enhance the antibacterial 
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activity of composite alginate and nanocellulose hydrogels, 
making them more effective in combating bacterial infec-
tions. Zinc oxide (ZnO) is one of the most widely used anti-
microbial agents and has been shown to be suitable for use 
as a bioactive wound dressing material [12, 13]. The anti-
bacterial ability of ZnO is postulated to be due to the release 
of Zn2+ ions into membrane cells, production of reactive 
oxygen species (ROS), and disruption and penetration of 
bacterial membrane cells, which trigger DNA denaturation, 
mitochondrial dysfunction, protein oxidation, and leakage 
of intracellular components [14–17]. Moreover, ZnO has 
been reported to promote fibroblast proliferation, which 
enhances re-epithelialization [18]. These properties hold 
promise for the development of biofunctionalized materials 
for various applications such as advanced wound dressings 
or food packaging.

Previous studies have predominantly focused on com-
posite hydrogels incorporating ZnO nanoparticles (ZnO 
NPs), which exhibit enhanced properties and antibacterial 
activity [19–21]. For example, Varaprasad et al. fabricated 
sodium alginate-coated cellulose fibers impregnated with 
ZnO NPs using a simple precipitation technique, which 
showed enhanced thermal stability, mechanical properties, 
and excellent antibacterial activity [22]. Shefa et al. suc-
cessfully designed 2,2,6,6-tetramethylpiperidine-1-oxyl 
radical (TEMPO)-oxidized cellulose nanofiber (TOCN)/
polyethylene glycol/ZnO hydrogels with tailored mechani-
cal properties and remarkable hemostatic activity that 
decreased bleeding time [23]. However, there is a clear 
research gap in the exploration of the potential benefits 
of utilizing zinc hydroxyacetate (Zn-HA), an intermediate 
compound formed prior to the conversion of ZnO through 
heat treatment, in terms of its usefulness as a functional 
antibacterial material. Thus, a comparative study between 
ZnO and Zn-HA warrants investigation, as this could pro-
vide insights into the role of different zinc particles (Zn Ps) 
in killing bacteria. The aim of this study was to assess and 
compare the antibacterial efficacy of different forms of Zn 
Ps and to evaluate the effect of Zn Ps on the physical and 
antibacterial properties of composite alginate/nanocellulose 
hydrogels. In this study, three zinc particles (Zn Ps), i.e., 
commercially available ZnO (Zn-C), ZnO nanoparticles 
(Zn-N), and zinc hydroxyacetate (Zn-HA) were used and 
compared. The physical characteristics of the hydrogels, 
such as their swelling behavior, were analyzed to deter-
mine the effect of embedded Zn Ps. Finally, the antibacte-
rial activity of the composite hydrogels containing Zn Ps 
was tested against a range of bacterial strains to assess their 
potential as antibacterial materials. The novelty of this study 
is highlighted by two main aspects. Firstly, it shows the first 
comparative study on the antibacterial efficacy of different 
Zn Ps. Secondly, it highlights the potential use of Zn-HA 

as an effective antibacterial material in composite alginate/
nanocellulose hydrogels. This research contributes to the 
understanding of the role of Zn Ps in enhancing the anti-
bacterial properties of composite hydrogel materials, pro-
viding valuable insights that could lead to the development 
of functional composite hydrogels suitable for biomedical 
or pharmaceutical applications.

Materials and Methods

Materials

Zinc acetate dihydrate, sodium hydroxide (NaOH), ethanol, 
and calcium chloride (CaCl2) were purchased from Merck 
(Jakarta, Indonesia). Sodium alginate was obtained from 
Sigma-Aldrich Co. Ltd. (Jakarta, Indonesia). Commercial 
ZnO (Zn-C) was purchased from Loba Chemie Pvt., Ltd. 
(Mumbai, India). TEMPO (2,2,6,6-tetramethylpiperidine 
1-oxyl)-oxidized cellulose nanofibers (TOCN) were used 
as previously described in our previous research [24]. All 
chemicals were of analytical grade and were used without 
further purification.

Synthesis and Characterization of Zn Ps Via the 
Precipitation Method

Zn Ps were synthesized via the precipitation method [25–
27] where zinc acetate dihydrate was used as a precursor 
and dissolved in ethanol at a concentration of 0.1 M. 1 M 
NaOH was added dropwise into the zinc ethanolic solution 
under agitated magnetic stirring (300 rpm) at room tempera-
ture (25 oC) until white solutions were formed. The reaction 
was continued for 2 h. Then, centrifugation at 8000 rpm for 
15 min was performed to collect the white solid precipitate, 
followed by washing twice with distilled water and ethanol. 
The white solid precipitate was dried in an oven at 80 oC for 
24 h to produce zinc hydroxyacetate (Zn-HA). Some parts 
of the white solid precipitates were taken and calcined in a 
tube furnace at 600 oC for 2 h at a heating rate of 5 oC /min 
to produce ZnO nanoparticles (Zn-N).

The characterization of the synthesized Zn particles 
(Zn Ps) was done using X-ray diffraction (XRD) and Field 
Emission Scanning Electron Microscopy (FE SEM) coupled 
with energy-dispersive X-ray spectroscopy (EDX) analysis. 
Powder samples were used for characterization. The crystal-
line patterns were analyzed on an XRD Instrument at inter-
vals of 5o−80o (2θ range). The size and morphology of the 
synthesized Zn Ps were determined using a JEOL FE SEM 
(JIB 4610 F) or FEI Quanta 650 at an accelerating voltage of 
15 or 25 kV with a gold coating to avoid the charging effect.
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hydrogels. In addition, the percentage inhibition (%) was 
determined by dividing the diameter of the inhibition zone 
(total diameter) by the diameter of the hydrogels multiplied 
by 100. The antibacterial activities of the Zn Ps were also 
evaluated using the disc diffusion method. The 8-mm diam-
eter sample discs containing Zn Ps dissolved in DMSO at 
varying concentrations (5, 10, and 20 mg/mL) were placed 
on an agar plate. Similarly, the diameter of the inhibition 
zone and percentage inhibition (%) were measured to assess 
the antibacterial activity of the Zn Ps. The experiments were 
conducted in triplicate.

In Vitro Biocompatibility of Hydrogels

The in vitro biocompatibility of the hydrogels was evaluated 
using human skin fibroblasts isolated from the preputium. 
The study protocol was approved by the Ethics Commit-
tee of the Faculty of Medicine, Universitas Pembangunan 
Nasional Veteran Jakarta, Indonesia, No. 7/I/2024/KEP. The 
cells were cultured in Dulbecco’s Modified Eagle’s medium 
(DMEM) with low glucose (Gibco, USA) supplemented 
with 10% fetal bovine serum (FBS) (Gibco, USA) and 1% 
penicillin-streptomycin. Cells were incubated in a humidi-
fied atmosphere containing 5% CO2 at 37oC for 24 h. The 
3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-
2-(4-sulfophenyl)-2 H-tetrazolium (MTS) assay was 
utilized to determine the in vitro biocompatibility and 
cell viability of the hydrogels according to a previously 
described method [30] with slight modifications. Briefly, the 
hydrogels were sterilized by UV treatment for 4 h. Subse-
quently, the samples were subjected to incubation with low 
glucose DMEM without FBS for 24 h to obtain hydrogel 
extracts at a concentration of 0.1 mg/mL. Simultaneously, 
the cells were seeded in a 96-well plate at a concentration 
of 5x103 cells/well and incubated for 24 h. The medium was 
then replaced with the hydrogel extracts and incubated for 
24 h. MTS reagent was then added to each well and the plate 
was incubated at 37oC for 24 h. The absorbance was mea-
sured directly using a microplate reader at a wavelength of 
490 nm. The cell viability was determined by dividing the 
absorption of each sample by that of the control (without 
sample). The experiments were performed in triplicate.

Results and Discussion

Synthesis and Characterization of Zn Ps

Three types of Zn Ps (Zn-N, Zn-HA, and Zn-C) were used 
and compared in this study. Zn-N and Zn-HA were synthe-
sized via a precipitation method in an ethanolic solution, 
whereas Zn-C was commercially obtained. In the case of 

Fabrication and Characterization of Alginate/TOCN/
Zn Ps Hydrogels

Hydrogels comprising alginate, TOCN, and Zn Ps were 
fabricated via ionic cross-linking using CaCl2. In a typical 
procedure, sodium alginate powder was dissolved in dis-
tilled water at a concentration of 3wt% using a magnetic 
stirrer. Zn Ps (Zn-N, Zn-C, and Zn-HA) at a concentration 
of 20 mg/mL were added to the alginate solution (3 mL) 
and sonicated for 30 min in an ultrasonic water bath. TOCN 
dissolved in distilled water (1wt%) was then added to the 
alginate/Zn solution at a volume ratio of 1:1 (3 mL) and 
mixed homogenously using a vortex mixer. The solutions 
were cast on a petri dish and immersed in CaCl2 solution 
(3%) for 1 h. The resulting hydrogels were carefully peeled 
from the petri dishes and characterized.

The cross-sectional images of the hydrogels were ana-
lyzed using SEM. The hydrogels were then freeze-dried for 
24 h. The lyophilized samples were sliced and coated with 
gold before SEM analysis (Hitachi SU3500) at an accelera-
tion voltage of 10 kV. EDX analysis was also performed 
to confirm the presence of Zn Ps in the hydrogels. Fourier-
transform infra-red (FTIR) spectroscopy analysis was also 
performed on the hydrogel films. The mechanical strength 
of the hydrogels was determined using a universal testing 
machine with a load cell of 10kN in the dry state. Both ends 
of the hydrogel films with dimensions of 6 cm x 1 cm were 
clipped. The swelling of the hydrogels was determined by 
immersing freeze-dried hydrogels in distilled water at 37 
oC and pH 7. At predetermined times, swollen hydrogels 
were taken, and the water not taken up by the hydrogels was 
removed using tissue paper and weighed. Then, the hydro-
gels were immersed again in distilled water. This step was 
repeated for 24 h. The swelling (%) was calculated using the 
following equation [28]:

Swelling (%) =

(
Ws −Wi

Wi

)
× 100

Where, Wi  and Ws  are the weights of freeze-dried hydro-
gels in the initial and swollen states, respectively.

Antibacterial Activities of the Zn Ps and Hydrogels

The antibacterial activities of the hydrogels were evaluated 
by the disc diffusion method [29] against S. aureus and E. 
coli, as representatives of gram-positive and gram-negative 
bacteria, respectively. The hydrogels were cut into spheri-
cal shapes and sterilized using ethanol. The hydrogels were 
then deposited on an agar plate containing bacteria prior to 
incubation for 24 h at 37oC. The diameter of the inhibition 
zone was measured to assess the antibacterial activity of the 
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Energy dispersive X-ray (EDX) analysis was performed 
on the Zn Ps. EDX is a method that analyzes the elemental 
composition of a material by detecting the X-rays emitted 
when the nucleus of an atom in the material is struck by the 
primary beam of electrons [33]. EDX analysis and elemen-
tal mapping confirmed the presence of zinc (Zn) and oxy-
gen (O) in Zn Ps with few impurities, indicating good purity 
(Fig. 2a-c). Figure 2d shows the atomic weight percentages 
(At%) of Zn-C, Zn-N, and Zn-HA. All Zn Ps showed a high 
percentage of Zn, accounting for more than 50% of the 
overall elemental composition. Notably, Zn-HA displayed 
a higher percentage of Zn at 60%, compared to Zn-C and 
Zn-N. The compositions of Zn and O in Zn-HA and Zn-C 
were similar. On the other hand, Zn-N contained 48% Zn 
and 52% O. These findings indicate that the elemental com-
position of Zn-N closely matches the theoretical atomic 
composition of ZnO [32].

Fabrication and Characterization of Alginate/TOCN/
Zn Ps Hydrogels

The formation of alginate/TOCN (AT) hydrogels involves 
ionic crosslinking of alginate using CaCl2 with fibrillar 
TOCN (Fig. S2) as a reinforcing filler. This crosslinking 
process creates a three-dimensional network structure that 

Zn-N, calcination was performed, but this was not applied 
to Zn-HA. Figure 1a shows the FE-SEM photographs of the 
Zn Ps. Zn-N was spherical and showed a quite uniform size 
distribution (Fig. 1b). The measured particle sizes were in 
the range of 100 nm (101 ± 40 nm). On the other hand, 
Zn-C showed a more heterogeneous morphology, display-
ing rod-like and quasi-spherical shapes. Its particle size (213 
± 69 nm) was larger than that of Zn-N. Interestingly, Zn-HA 
exhibited plate-like structures with sizes ranging from one 
to several micrometers (3.9 ± 1.8 μm). Zeta potential analy-
sis showed that all three Zn Ps had negative surface charges, 
with the highest value observed for Zn-N (-34.7 mV) and the 
lowest for Zn-HA (-16.7 mV) (Fig. S1). These values indi-
cate a satisfactory colloidal stability. Figure 1c shows the 
XRD patterns of Zn Ps. The XRD pattern of Zn-N closely 
resembles that of Zn-C. The diffraction peaks observed at 2θ 
angles of 32°, 34.4°, 36.3°, 47.5°, 56.6°, 62.8°, 66.4°, 67.9°, 
and 69° provide evidence that Zn-N and Zn-C were ZnO 
with a wurtzite structure [31]. In contrast, the XRD spectra 
of Zn-HA did not show the characteristic peaks of ZnO [27], 
as expected. These findings align with prior research, which 
indicates that the process of high-temperature calcination is 
crucial for converting Zn-HA into ZnO with a highly crys-
talline wurtzite structure [32].

Fig. 1 Representative FE SEM images of Zn Ps (Zn-C, Zn-N, and Zn-HA) (a), Particle size distribution (b), and XRD patterns of Zn Ps (c)
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conducted to evaluate the chemical interactions between the 
Zn Ps and AT hydrogels. Figure 4 shows the FT-IR spec-
tra of alginate, TOCN, and hydrogels with and without Zn 
Ps. The FT-IR spectra of the AT hydrogels are characterized 
by absorption bands at 3340 cm-1, 2921 cm-1, 1597 cm-1, 
1423 cm-1, and 1024 cm-1 corresponding to the stretch-
ing vibration of the OH groups of alginate and TOCN, the 
stretching vibration of the −CH group in cellulose, the 
stretching vibration of carboxyl groups, the C = O bending 
vibrations of carbonyl groups, and the C–O stretching vibra-
tions of cellulose, respectively [1, 8, 34, 35]. The stretching 
vibration of Zn–O bonds at around 400–500 cm-1 was not 
clearly detected in the ATZ-N, ATZ-HA, and ATZ-C hydro-
gels, possibly because of the dominance of the alginate/
TOCN signals. However, the addition of Zn Ps tended to 
decrease the % transmittance of AT hydrogels at absorption 
bands at 3340 cm-1, 1597 cm-1, and 1423 cm-1, suggesting 

provides a hydrogel with good mechanical strength and sta-
bility [11]. The incorporation of TOCN might enhance the 
properties of hydrogels such as their water retention capac-
ity, mechanical properties, and biocompatibility [8, 9]. Zn 
Ps (Zn-N, Zn-HA, and Zn-C) were incorporated into the AT 
hydrogels by a simple addition and mixing process, which 
allows the facile production of composite ATZ-N, ATZ-
HA, and ATZ-C hydrogels, respectively. Photographs of the 
hydrogels are shown in Fig. 3a. The cross-sectional mor-
phologies of the composite hydrogels were evaluated using 
SEM (Fig. 3b). Layered and interconnected 3D structures 
were observed in all hydrogels, which indicates that the 
effect of Zn Ps on the morphology of the AT hydrogels was 
minimal. EDX analysis confirmed the existence of CaCl2, 
which contributed to the formation of the 3D interpenetrat-
ing network hydrogels, and the Zn Ps were distributed in the 
hydrogel matrix (Fig. 3c and Fig. S3). FT-IR analysis was 

Fig. 2 The elemental mapping images of Zn Ps (Zn-C, Zn-N, and Zn-HA) (a-c) and the EDX analysis of Zn Ps (d)
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Swelling is an important property of hydrogels, as it 
enables them to absorb large amounts of water or other liq-
uids [36]. Swelling in a hydrogel material is the expansion 
of the space between the polymer chains due to the penetra-
tion of water molecules into the polymer network [37, 38]. 
The swelling behavior of the hydrogels over a period of 24 h 
is presented in Fig. 6a. The AT hydrogels exhibited the high-
est swelling, reaching approximately 1300% within 4 h and 
maintaining a stable swollen state thereafter. The addition of 
Zn Ps into the AT hydrogels considerably decreased swell-
ing, as evidenced by the decrease in the swelling percentage 
of ATZ-N, ATZ-C, and ATZ-HA at 1000, 660, and 470%, 
respectively, after 24 h. This decrease is attributed to the 

the presence of Zn Ps in AT hydrogels and possible interac-
tion between them.

The crystallographic structures of alginate, TOCN, and 
the hydrogels were evaluated by XRD analysis (Fig. 5a and 
Fig.S4). The XRD patterns revealed that the AT hydrogels 
had a highly crystalline structure, which was attributed to 
the presence of calcium crosslinking and TOCN, and the 
presence of Zn Ps in the hydrogels was clearly detected. 
However, the addition of Zn Ps into AT hydrogels consid-
erably decreased their crystallinity, as evidenced by the 
decrease in the XRD peaks at 22o, 29o and 31o associated 
with the AT hydrogel crystalline structure, particularly for 
ATZ-HA (Fig. 5b).

Fig. 3 Photographs of the hydrogels (a), cross-sectional morphology (b), and elemental composition of the hydrogels as determined by SEM-EDX 
analysis (c)
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measured to evaluate their mechanical strength. Figure 6b 
shows the stress-strain curves of the composite hydrogels. 
AT hydrogels exhibited the highest tensile strength (13.3 N/
mm2) compared to those containing Zn Ps (less than 9.8 N/
mm2), indicating that the addition of ZnO or Zn-HA reduces 
the mechanical properties of AT hydrogels. These results 
agree with those of a previous study that used nanocom-
posite films based on hydroxypropyl methylcellulose/

restricted movement of polymer chains associated with the 
presence of Zn Ps, which reduces water absorption and pre-
vents water molecules from interacting with free hydroxyl 
groups to form hydrogen bonds with the polymer matrix 
[38–40]. ATZ-HA showed the lowest swelling of approxi-
mately 470%, which might be due to stronger hydrogen 
bond interactions with the polymer chains that prevent 
water absorption. The tensile strength of the hydrogels was 

Fig. 5 XRD patterns of alginate/TOCN hydrogels (AT) and alginate/TOCN/Zn Ps hydrogels (a) and an enlarged image of the XRD patterns of 
alginate/TOCN/Zn Ps hydrogels (b)

 

Fig. 4 ATR-FTIR spectra of 
TOCN, alginate, alginate/TOCN 
hydrogels (AT), and AT/Zn Ps 
hydrogels (ATZ-N, ATZ-HA, and 
ATZ-C)
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(ZOI) ranging from 8.3 mm to 19.7 mm, depending on the 
concentrations and types of Zn Ps (Table 1; Fig. 7a). Inter-
estingly, Zn-HA showed the highest ZOI compared to ZN-C 
and Zn-N, with an inhibition percentage of 146 at a con-
centration of 20 mg/mL for S. aureus. Zn-HA showed a 
higher ZOI against S. aureus than E. coli, which is in agree-
ment with previous studies [42–44]. This tendency towards 
Gram-positive bacteria may be explained by discrepancies 
in cell structure, such as the presence of lipopolysaccharides 
in the outer membrane of Gram-negative bacteria [45], as 
well as differences in metabolism between Gram-positive 
and Gram-negative bacteria [44]. Notably, no bacterial inhi-
bition was observed at concentrations < 2.5 mg/mL (data 
not shown).

The inhibitory concentration observed in this study 
far exceeds the reported minimum inhibitory concentra-
tion (MIC) of ZnO for these bacteria, which ranges from 
25 µg/mL to 1.25 mg/mL [42, 44, 46–49]. These findings 
were somewhat unexpected, given prior research suggest-
ing the potent antibacterial properties of ZnO [50–52]. We 
hypothesize that the enhanced antibacterial capabilities of 
Zn-HA may be attributed to the increased release of Zn2+ 
(7.5 mg/100 mL compared to 0.8 and 1.2 mg/100 mL) (Fig. 
S5a) [38, 53]. This increase could be due to the enhanced 
hydrogen bonding interactions between water molecules, 
thereby promoting Zn-HA solubility [54]. In addition, 
ZnO possesses a more stable crystalline structure, render-
ing it insoluble in water and resulting in a slower release 
of Zn2+ through a dissolution process [55]. Other possible 
mechanisms include the generation of ROS through Zn2+ 
dissolution [56] and mechanical damage to the bacterial 
membrane caused by the direct contact between Zn-HA and 
bacteria [57]. Additional research is required to validate this 
hypothesis and to understand the mechanism underlying the 
enhanced antibacterial efficacy of Zn-HA.

carboxymethyl starch/ZnO for wound dressing applications 
[41], but they contradict previous research suggesting that 
ZnO can enhance the mechanical properties of sodium algi-
nate-based hydrogels [22, 35]. The reason for the decreased 
tensile strength might be due to the agglomeration of Zn Ps 
in the hydrogel network, [41] the interference of the ionic 
crosslinking process by Zn Ps, or the decreased crystallinity 
of the hydrogels, as shown by XRD analysis.

Antibacterial Activities of the Zn Ps and Hydrogels 
Containing Zn Ps

The antibacterial activities of Zn Ps were assessed against 
Gram-positive S. aureus and Gram-negative E. coli using the 
disc diffusion method at various concentrations (5, 10, and 
20 mg/mL). All Zn Ps exhibited a distinct zone of inhibition 

Table 1 The results of zone of inhibition (ZOI) and inhibition percent-
age for Zn Ps at varying concentrations (5,10, and 20 mg/mL)
No Samples Type of bacteria

E. coli S. aureus
Zone of inhibition (ZOI)
Diameter 
(mm)

% 
Inhibition

Diameter 
(mm)

% Inhi-
bition

1 5 mg/mL Zn-HA 11.3 ± 0.6 42 11.0 ± 1.7 38
2 5 mg/mL Zn-N 8.0 ± 0 0 8.0 ± 0 0
3 5 mg/mL Zn-C 8.7 ± 0.6 8 8.0 ± 0 0
4 10 mg/mL 

Zn-HA
13.0 ± 1.0 63 16.3 ± 1.2 104

5 10 mg/mL Zn-N 8.3 ± 0.6 4 8.0 ± 0 0
6 10 mg/mL Zn-C 9.0 ± 0 13 8.0 ± 0 0
7 20 mg/mL 

Zn-HA
16.0 ± 1 100 19.7 ± 0.6 146

8 20 mg/mL Zn-N 9.0 ± 0 13 9.0 ± 0 13
9 20 mg/mL Zn-C 9.3 ± 0.6 17 9.0 ± 0 13
10 Chloramphenicol 15.3 ± 0.6 92 24.7 ± 0.6 208

Fig. 6 The swelling of the hydrogels at distilled water pH 7 (a), and tensile stress-strain curves of the hydrogels
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release of Zn2+ ions from the hydrogel matrix (Fig. S5b). 
Our findings suggest that there is no need to convert Zn-HA 
to ZnO to impart antibacterial capabilities to the hydrogels, 
as the Zn-HA itself exhibits strong antibacterial properties. 
This simplifies the production process and reduces manu-
facturing costs. Thus, AT hydrogels with Zn-HA (ATZ-HA) 
have the potential to be utilized as antibacterial materials. 
A summary of the antibacterial properties of the hydrogels 
is shown in Table 3, including the in vitro biocompatibility, 
which will be discussed in the following section.

In Vitro Biocompatibility of the Hydrogels

The in vitro biocompatibility of the hydrogels was assessed 
using the MTS assay, which measures cell viability and 
proliferation in response to hydrogels. In this study, we 
employed an indirect assay utilizing leach-out products 
from hydrogels (hydrogel extracts) at a concentration of 
0.1 mg/mL. Figure 8 shows the cell viability of human skin 
fibroblasts treated with hydrogels compared to the control. 
All hydrogels exhibited a decrease in cell viability, with the 
lowest cell viability observed in ATZ-N at 60%. However, 

The findings of our study revealed that a concentration of 
20 mg/mL Zn Ps exhibited the largest inhibition zone, indi-
cating its superior efficacy in suppressing bacterial growth. 
Consequently, we employed a concentration of 20 mg/mL of 
Zn Ps in the hydrogel system. Consistent with previous find-
ings, the hydrogel system with Zn-HA (ATZ-HA) exhibited 
superior outcomes compared to the hydrogels with Zn-C 
(ATZ-C) and Zn-N (ATZ-N) (Fig. 7b; Table 2). Neverthe-
less, the bacterial inhibition was considerably lower in the 
hydrogel system, potentially attributable to the delayed 

Table 2 The results of zone of inhibition (ZOI) and inhibition percent-
age for AT/Zn Ps hydrogels at a concentration of 20 mg/mL
No Samples Type of bacteria

E. coli S. aureus
Zone of inhibition (ZOI)
Diameter 
(mm)

% 
Inhibition

Diameter 
(mm)

% 
Inhi-
bition

1 AT 8.0 ± 0.0 0 8.0 ± 0.0 0
2 ATZ-N 8.0 ± 0.0 0 8.0 ± 0.0 0
3 ATZ-HA 9.0 ± 0.0 13 9.0 ± 0.6 17
4 ATZ-C 8.0 ± 0.0 0 8.0 ± 0.0 0

Fig. 7 Antibacterial activity of Zn 
Ps (a) and AT hydrogels embed-
ded with Zn Ps (b). The red 
dashed circle indicates ZOI
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to false-positive or false-negative results [62, 63]. Further 
studies using additional assays to assess cell viability and 
toxicity are warranted to fully understand the impact of 
these hydrogels on the cells.

Conclusions

We fabricated composite alginate/TOCN (AT) hydrogels 
incorporating different forms of zinc particles (Zn Ps) (Zn-
N, Zn-HA, and Zn-C) and compared their antibacterial effec-
tiveness. All Zn Ps exhibited negative charges and displayed 
sufficient colloidal stability, with a zeta potential ranging 
from − 16.7 mV to -34.7 mV. The dispersion of Zn Ps within 
the hydrogel matrix was confirmed through EDX and XRD 
analysis. However, the addition of Zn Ps led to a reduction 
in the mechanical properties and swelling behavior of the 
hydrogels, as evidenced by a decrease in tensile strength, 
crystallinity, and swelling (%). Moreover, the antibacterial 
activity of Zn Ps was found to be both concentration-depen-
dent and specific to the type of Zn Ps, with Zn-HA demon-
strating the highest effectiveness against both Gram-positive 
S. aureus and Gram-negative E. coli. Among three types of 
hydrogels (ATZ-N, ATZ-C, and ATZ-HA), only ATZ-HA 
showed antibacterial activity against both S. aureus and E. 
coli, which might be due to the higher Zn2+ release from 
Zn-HA as compared to the more stable ZnO wurtzite struc-
tures of Zn-N and Zn-C, which were dispersed in ATZ-N 
and ATZ-C, as determined by zinc dissolution and release 

no statistically significant differences in cell viability were 
observed between the hydrogels. The cell viability observed 
in all hydrogels was above 50%, indicating that they are 
considered to have mild toxicity, based on the ISO 10993-
5:2009(E) criteria [30]. This decrease in cell viability was 
possibly due to the presence of TOCN in the hydrogels, as 
documented in previous studies [58, 59]. In addition, the 
higher concentrations of Zn2+ used in this study also con-
tributed to reduced cell viability [56, 60]. It is important to 
note that the MTS assay used in this study may not fully 
capture the potential cytotoxic effects of hydrogels, as it 
measures metabolic activity rather than the number of cells 
[61, 62]. In addition, certain materials, including hydrogel 
components, may interfere with the MTS assay, leading 

Table 3 Comparison of antibacterial activity, Zn2+ release, and in vitro 
biocompatibility of the hydrogels
Hydrogels Zn Ps Type of 

bacteria
% 
Inhibition

Zn2+ 
release 
(mg/100 
mL)

Cell 
via-
bility 
(%)

AT - E. coli NA - 71.8 
± 5.1S. aureus NA

ATZ-N ZnO NPs E. coli NA 0.21 ± 
0.01

60.2 
± 9.4S. aureus NA

ATZ-HA Zn-HA E. coli 13 0.96 ± 
0.01

62.6 
± 5.8S. aureus 17

ATZ-C ZnO E. coli NA 0.58 ± 
0.01

70.6 
± 11S. aureus NA

NA: no bacterial inhibition was observed

Fig. 8 Cell viability of human 
skin fibroblasts treated with the 
hydrogels after 24 h of incubation 
as determined by the MTS assay. 
Hydrogel extracts at a concentra-
tion of 0.1 mg/mL were used
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studies. Given the mild toxicity and antibacterial activity of 
the ATZ-HA hydrogels, this research sets the foundation for 
further investigation into its potential applications in wound 
healing and infection control. Future studies should focus 
on elucidating the underlying mechanisms of the enhanced 
antibacterial activity of Zn-HA at the cellular and molecular 
levels and optimizing the Zn-HA formulation to maintain 
cell viability while maximizing antibacterial efficacy for 
biomedical-related applications.
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